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This paper contains a simple and entirely conventional application of lifting-line 
theory to a close-hauled, high aspect ratio sail, set upright on a flat water surface. In 
seeking an optimum spanwise loading distribution however, an unconventional 
criterion is used, which leads to an unexpected result. 

By seeking to maximize the forward thrust for a given rolling moment, rather than 
maximizing the lift-drag ratio, an optimum loading distribution is obtained which 
departs dramatically from elliptic loading. It offers the prospect of a significant 
improvement in extreme yacht performance if the associated mechanical and control 
problems can ever be solved. 

~ 

1. Introduction 
As the designers of sailing craft have sought to improve performance, particularly in 

sailing to windward, empirical experience has been complemented by the increasing 
application of modern aerodynamic knowledge. Much of this knowledge is the direct 
result of early research into the design of aeroplane wings. In  some cases the simi- 
larities are sufficient to justify the direct application of the results and conclusions 
without the need for a fresh and fundamental theoretical analysis. Thus, for example, 
the attempt to produce sails of increasingly high aspect ratio with elliptical planform 
and reduced twist is a direct imitation of these features of aeroplane wing design which 
are known to produce optimum performance. 

Sometirncs this approach has yielded beneficial results. It is usually true, for example, 
that an improved liftrdrag ratio leads to better windward performance. However, it is 
surely legitimate to question whether it is invariably true that what is beneficial for 
aeroplanes is also necessarily good for sailing yachts. 

An aeroplane designer and operator wish to maximize the lift-drag ratio because 
in this way the cost of a given journey is minimized. If the aim of the yachtsman or 
yacht designer is questioned at  the same basic level, one logical answer is that he wishes 
to travel as fast as possible without capsizing. When the wind is light and the risk of 
capsizing or excessive heeling is absent, then the vector diagrams of the force acting 
on a sail show without doubt that the highest lift-drag ratio gives the best performance 
for a given sail area. However, if the yacht is not about to capsize then it must be cap- 
able of carrying a larger sail with a consequent increase in forward thrust. The simple 
optimization of the lift-drag ratio has therefore not yielded maximum performance. 
Such a simple optimization is appropriate only when externally applied constraints, 
such as class rules, or the practical requirements of a safe and seaworthy craft, inhibit 
the search for a truly optimum design. 
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FIGURE 1. Definition of axes and principal dimensions. 

This paper puts forward the proposal that  the criterion for true optimization of 
windward performance of a sailing craft is not the maximization of the lift-drag 
ratio but is simply the achievement of the greatest possible forward thrust without exceeding 
a given rolling moment. 

If this proposal is accepted, then the conventional results of aeroplane wing theory 
must be rejected and a new application of the theory must be made in order to seek for a 
design which satisfies the revised optimization condition. 

The method of analysis empIoyed is classical lifting-line theory. One reason for this 
unrealistic choice is historical. Inasmuch as i t  was lifting-line theory which led to  the 
wide acceptance of a particular spanwise loading distribution (elliptic loading), so i t  is 
fitting to use the same theory in order to show by comparison, directly and in the same 
terms, the benefits in performance which may result from the adoption of the more 
basic optimization criterion proposed here. 

The particular areas where the analysis is inadequate will be pointed out formally 
as they arise in the following paragraphs. It must be acknowledged that, because of 
these inadequacies, neither the time-honoured result nor the new optimum loading is 
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FIGURE 

X 

2 .  Notation end sign conventions for the applicstion of lifting-line 
to  a vertical sail. 

theory 

realistic. Nevertheless, just as the old result provided an incentive to designers who 
were able to achieve a practical benefit under the influence of a simple theoretical 
idea, so it is hoped that the present paper may provide the initial motivation for those 
who may find themselves able to pursue the inquiry either by a more sophisticated 
theory, by experiment or by a study of the practical design problems. 

2. The lifting-line model applied to a vertical sail 
The application of lifting-line theory to a sail is of course not original. Both Tanner 

(1965) and Milgram (1968) have made use of this model with rather different objectives. 
The following analysis is also set out in detail by Wood & Tan (1976). 

2 .  I. General description 

In  figure 1 a right-handed co-ordinate system is defined in which the X ,  Y plane 
coincides with the water surface with the X axis aligned parallel to the centre-line of 
the yacht hull and facing forwards. The Z axis is vertically upwards at the position of 
the sail. This is considered to be of high aspect ratio and is represented in figure 2 by a 
vortex line of variable strength r(Z) on the 2 axis. 
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FIauRE 3. Relative wind. 

The variation in r ( Z )  gives rise to a trailing vortex sheet of strength yT(Z) .  The sign 
convention chosen for r ( Z )  and y T ( Z )  is the right-hand screw convention, so that 
y T ( Z )  is given by 

y ( z )  = -dr(z)/dz = - r(z). (1)  

It is assumed t,hat the trailing vortex sheet will be aligned at. every height 2 with the 
local relative wind vector (Qn(Z), &Z)), which is the resultant of the undisturbed wind 
vector and the motion of the yacht through the water (figure 3). If the wind were 
uniform, then $(Z) would not vary with height. In  general, however, if the absolute 
wind speed near the water surface is reduced by friction, and even if the absolute 
direction does not vary significantly, then the direction $(Z) of the relative wind may 
vary considerably over the height of the sail (figure 3). 

2 . 2 .  Induced velocities due to the trailing vortex sheet 

The presence of a trailing vortex sheet gives rise to induced velocities in the surrounding 
flow. In  general, these velocities have vertical components as well as horizontal com- 
ponents. However, at the horizontal water surface, which for the purpose of the present 
analysis is assumed to be flat, the vertical component must obviously be zero. This is 
achieved by means of an image sail to give symmetry about the water surface plane. 

It can be shown that the integrated effect of the semi-infinite sheet of trailing vortex 
elements of strength f’(Z’) [see ( I ) ]  and inclined a t  an angle $(Z) to the yacht centre- 
line gives rise to a horizontal induced velocity at any height Z on the vertical sail axis 
(see figure 2 ) .  This velocity has components &(Z) in the X (forward) direction and 
K ( 2 )  in the Y direction given by 
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FIauRE 4. Velocity and force vectors. 

2.3. Aerodynamic forces and moments 

To calculate the aerodynamic force, normally known as lift, normal to a stream of 
velocity Q when it flows over an aerofoil having circulation I?, use is made of the 
Blasius theorem, which leads to the result 

L = pQr. 

This two-dimensional result has been extended for use on finite wings where is a 
variable, and also propeller blades where neither Q nor l? remains constant, by applying 
the equation locally a t  every section. To do this it is simply necessary to recognize that 
the direction of the local force per unit span is a t  right angles not just to the undis- 
turbed free stream, but to the locally deflected stream including the induced effects of 
the trailing vortex system. I n  the case of a sail in a non-uniform wind the same approach 
is equally valid. Thus in the present case we refer to figures 3 and 4 and write the local 
force components Z,(Z), l y ( Z )  per unit height of the sail as 

These local force components may then be integrated over the whole height of the sail in 
order to determine the overall wind force components: 

With the sign convention shown in figure 4 the forward thrust on the yacht is F, 
while Fy is the lateral force which must be resisted by the ‘lift ’ on the keel and under- 
water surfaces of the hull as it moves through the water. See also figure 5. 
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FIGURE 5 .  Definition of rolling moment M,. 

Of equal importance of course is the capacity of the hull to resist a rolling moment 
without heeling excessively or capsizing. If the side force Fy is resisted by the hull at an 
effective depth d below the surface (figure 5) then the total rolling moment ME may be 
described by 

where Mx is the moment of the lateral wind force about Z = 0, 

M- = -M,+F,d, 

M,  5 - /oflZZ,(Z)dZ = -P /~"  {Qn(2) cos $(Z)  - Ui(Z)}l?(Z)ZdZ. 

Since it is the purpose of the present analysis to consider sail design only and to avoid 
any involvement with hull interactions, i t  will be assumed that FE d < M,. This 
statement is probably quite accurate in the case of catamarans, but the relatively 
deep keel on most monohull craft probably increases significantly the effective 
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moment arm associated with a given side force. For this reason, despite some loss in 
performance, dinghy sailors sometimes find an improvement in comfort if the centre- 
board is not extended to its full depth when sailing to windward in strong winds. 
Neglecting this unspecified keel moment for the present, we may write 

Pitching moments (especially important in catamaran design) and the effects of 
roll angle including yawing moments are not a necessary topic for inclusion in the 
present argument. A more general and comprehensive analysis of yacht sails including 
the effects of roll has been published by Milgram (1  968). 

3. Real effects and limitations of the analysis 
3.1. Description of sail geometry 

The present description of the aerodynamic effect of a yacht sail in terms of a mere 
circulation distribution r ( Z )  is all that is necessary for the proposed optimization 
calculation. However it may assist the physical interpretation, and of course the ulti- 
mate application of the results, if the sail can also be considered as a physical shape with 
chord c ( Z )  and a curvature which produces a lift coefficient CJZ) at an angular setting 
p ( Z )  relative to the yacht centre-1iIie.t This is accomplished by noting that 

while 
CAZ) = W/{4PQk(Z)  C(Z)) 

Thus 

The curved shape and angular position of the sail may be included in the description by 
applying locally the st,andard result of two-dimensional thin-aerofoil theory that any 
curved camber line has a design lift coefficient C,,(Z) at a particular design incidence 
ao(Z) relative to the oncoming free stream. 

At any other incidence a ( 2 )  this shape has a modified lift coefficient given by 

C,(Z) = C,,(Z) + 2n{a(Z) - a"(z)}. 

As a result of induced velocity components, the relative air stream is inclined to the 
yacht centre-plane not at #(Z) but at a modified angle Q(Z) i- s(Z) given by 

t a n { W )  + E(Z)l = { Q R W  sin P ( Z )  + W)}/{QdZ) cos $(Z) - qcz,), 

P(Z) = W) + @) -4zh 
so that the inclination of the sail to the yacht axis is given by 

3.2. Defects of lifting-line theory 

Strictly, of course, these statements about sail shape are quite inconsistent with the 
use of lifting-line theory, which, by definition, is incapable of describing the near flow 
field correctly. The description is not used in the present analysis. Its value is simply 

t This is of course a very elementary description. Analyses which take account of sail flexi- 
bility have been performed, notably by Thwaites (1961) and Duggan (1966). 

I6 F L M  85 
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that it emphasizes the practical fact that a circulation distribution r(Z) cannot be 
generated without a lifting surface of finite size c ( 2 )  shaped and inclined to produce a 
finite and limited local lift coefficient C,(Z). Both these features are reminders of the 
profile drag, which varies both with the surface area and with the lift coefficient. 

By neglecting this variable drag contribution, the present analysis not only over- 
estimates the thrust, but also produces an artificially simple statement of its variation. 
This must be recognized when assessing the results. 

Errors which are of second order and therefore of much less significance include the 
fact that the trailing vortex sheet does not extend to infinity in practice but rolls up to 
form discrete tip vortices. Also, the real trailing vortex pattern, having a self-induced 
transverse velocity, does not lie quite parallel to the undisturbed approaching flow. 
The use of sin +(Z') and cos +(Z') in (2) and (3) is therefore slightly in error. 

3.3.  Hull disturbance and gap effects 

Following Tanner (1965) and Milgram (1968), an attempt is made in the present analy- 
sis to include an elementary description of the gap below the foot of the sails. However, 
the gap thus represented contains no simulation of the hull of the boat, which partially 
obstructs that gap. 

It is of course as inconsistent in the context of lifting-line theory to consider the 
detailed shape of the hull as it is to consider the detailed shape of the sails. An appro- 
priate modification to the theory might be to locate the gap some way above the water 
surface and to apply a loading distribution to represent the hull. Failing this it must be 
recognized that a cross-flow over the hull probably has the beneficial effect of increas- 
ing the effective incidence of the sail at  low levels. 

The disadvantage of the gap remains severe however as the present results show and 
i t  is perhaps not inappropriate to refer to the popularity of the low-cut Genoa jib 
among racing yachtsmen and to suggest that practical efforts can and should be made 
to reduce the size of the gap. 

It is debatable whether the present argument is helped by including the effect of a 
gap when so many other real effects are ignored. Indeed, since the primary objective of 
the analysis is to compare a new optimization criterion with the conventionally 
accepted maximization of the lift-drag ratio, it is most important to apply the same 
restrictions to the former as to the latter. 

The earlier analysis, applied of course to aeroplanes, has no gap, neither is it in- 
fluenced in any way by fuselage cross-flow effects. consequently the only valid com- 
parison is with an analysis which makes the same assumptions however unrealistic 
these may be. To achieve this direct comparison the present analysis is repeated in 
5 7 with the gap removed. 

4. Optimization criterion and dimensionless equations 
As previously stated, the aimof the present paper is to consider whetherthereexistsa 

theoretical optimum sail. In  order to pursue this objective it is necessary to define what 
is meant by an optimum sail and to consider what constraints, if any, are to be applied 
as the optimum is determined. For example, a restricted mast height might lead to a 
very different optimum from that which would be discovered if the total sail area were 
limited instead. 
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For the purpose of the present argument, all limitations based upon conventional 
yacht racing class rules, and even upon safety or engineering practicability, are re- 
moved in order to ask in a totally uninhibited way the question: 'what sort of sail will 
provide the greatest possible forward thrust for a given hull when sailing to windward? ' 

The question has been posed deliberately in terms of forward thrust rather than 
forward speed in order to avoid, for the present, any consideration of hull-dynamic 
effects. This is unrealistic in that the induced drag of the underwater parts of the hull 
will certainly increase with increasing side force. However, provided that this is 
remembered when assessing the results, it is sufficient for the present purpose to think 
of the hull simply in terms of its capacity to resist the rolling moment generated by the 
sail. 

When considered in this way the optimum sail is clearly one which generates the 
largest possible thrust Fx without exceeding some fixed limiting value of the rolling 
moment MR. 

To simplify the present results still further, the number of variables affecting 
the forward thrust is reduced by assuming that the incident relative wind vector 
(Qn(Z) ,  $ ( Z ) )  is uniform. This assumption also removes the only obstacle to a truly 
dimensionless and therefore general formulation of the problem (Wood & Tan 1976). A 
further benefit is that the direct comparison with other results, discussed in the previous 
section, remains possible inasmuch as these also assume uniform flow. 

It is essential, in any dimensionless formulation of the present problem, to retain 
the dimensionless mast height h as an independent variable. The rolling moment MR, 
on the other hand, is specified as being a constant and equal to the limiting rolling 
moment M, which the hull can withstand. Under these conditions, dimensional analysis 
reveals an alternative constant reference length I ,  defined by 

1, = (Jfto/PQk)'. 

The remaining dimensionless parameters are then given as follows: 

fx = FX/(PQ%, fu = W ( P Q 3 3 ,  

h, = H/Io, g ( z )  = W ) / ( Q R Z O ) .  

M ,  = MI*l(PQ%I,3) = JftIt/J& 

For convenience in the subsequent Fourier analysis the dimensionless position var- 
iable z is still defined with reference to the mast height H rather than I , ,  i.e. 

z = Z / H ,  b = B / H .  

Using these variables, (6) and (7) may be rewritten as 

fz = hjl{sin$+qi(z) 0 cos$}g(z)dz, 

f = h 1 {cos q5 - q i ( z )  sin $} g(z) dz, 
0 

where the induced velocity components are defined by (2) and (3) such that 

(9) 

16-2 
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FIGURE 6. Co-ordinate transformations for Fourier series. 
(a) Sail with gap. (a) Sail with no gap. 

Because the reference length 2, is related to the limiting hull rolling moment No the 
requirement that the rolling moment MR of the sail shall not exceed this limiting value 
corresponds to the statement m, < 1 .  Thus (8) Ieads to a dimensionless relationship 
which sets a limit upon the circulation strength in terms of the mast height: 

1 2 h’/,* {cos @ - q i ( z )  sin @} zg(z) dz.  

5. Fourier series for circulation 
I n  (9)-(12) the circulation distribution g(z’) is not yet determined. The aim of the 

present analysis is in fact to specify a circulation distribution which will maximize the 
value off, in (9) whilst satisfying the rolling-moment limitation described in (12). 

It is obvious physically that g(z‘)  must be zero both a t  the head and a t  the foot of the 
sail. Thus a convenient Fourier representation for g(z)  is an odd (sine terms only) series 
based upon an angle parameter which is zero a t  the foot of the sail and which reaches a 
value TT a t  the head. A suitable co-ordinate transformation is shown in figure 6(a),  
where the luff of the sail has length B. This, and the subsequent analysis leading to 
(15)-( 17) ,  is essentially similar to that used by Tanner (1965) : 

2 = H - ~ B - + B C O S O .  

Using this transformation in dimensionless form we have 

z = I-ib-bcosO 

with a corresponding equation for the dummy variable z’ in terms of 0’, so that 

and 
2’ - z = - &b(cos 0‘ - cos 0 )  

2’ + z = $b(a. - ros O’), 
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where 
a = 4/b-2-cos8. 

If the Fourier series for g(z') is then written as 

m 

n = l  
g(z') = Ansinno' 

we may substitute in (1 1) to obtain the induced velocity 

1 m  

Evaluating the integrals, we have finally 

469 

With the same substitution in (9) we have 

After evaluating the int,egrals, this reduces to 

where 

Similarly (10) becomes 

while (12) reduces t o t  

nhZb(2 - b) cos $ 
8 

nh2 b2 cos $ 
A1 - 16 A2 1 =  

t Tho fourth tenn in (17) may be writaten in this form provided that A,+l is taken to be zero 
\\.hen n = 1.  
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where E,(m, n )  is as previously defined and 

6. Numerical evaluation 
The task of choosing a set of Fourier coefficients A ,  which maximizes the value of 

f, [equation (14)] whilst satisfying the rolling-moment limitation [equation (1  7)] was 
carried out numerically from this point, using the I.C.L. 1906 computer of the Oxford 
University Computing Service. 

It was planned initially to use up to fifteen terms in a truncated Fourier series, but 
after some trials it was found that this number could be reduced to ten without 
significant loss of accuracy. 

Before computing each case, values of the dimensionless mast height h, the luff 
length fraction b and the relative wind angle q5 were chosen as constants. Using these 
values, the twelve constant coefficients in ( l a ) ,  (16) and (1 7) were then calculated. 
Also, arrays of values for the integrals E,(m, n) and E,(m, n) were prepared according 
to (15) and (18) using Simpson’s rule. 

As an arbitrary starting point for the optimization procedure, all the Fourier coeffi- 
cients except the first were assigned zero values. This reduced ( 1 7 )  to a quadratic 
expression yielding a starting value for A,, which could be substituted in (14)  to 
determine a base value for f,. 

A trial value of the next Fourier coefficient A ,  was then introduced. When combined 
with the starting value of A ,  in (1  7) this yielded a value of the rolling moment which 
was no longer unity. The next operation was therefore to determine a scaling factor 
which, when applied to every coefficient, would produce a new set of coefficients giving 
unit rolling moment and thus satisfying (17) .  By using these new values of A ,  and A ,  in 
( 1 4 )  a revised value of fz was produced. A comparison between this and the previous 
value showed whether or not the latest change in A ,  constituted an improvement. In 
the light of this information the next and subsequent changes in A ,  were modified 
until a maximum infi was detected. 

This cycle was repeated in order to introduce and optimize each successive Fourier 
coefficient in turn until all ten coefficients had been determined. These were then used 
finally to describe the loading distribution and to evaluate the associated side thrust 
fa, from (16). 

An obvious fault in this procedure is that it  does not necessarily satisfy the require- 
ment for simultaneous optimization of all the coefficients. To investigate this difficulty, 
a, convergence check was run in a number of cases. This was done by repeating the 
term-by-term optimization but starting with initial values taken fron the previous 
solution. In  the cases tested, the variation in f, as a result of this second approxima- 
tion was of order 0.1 only and it was judged that a second approximation was not 
necessary. 

7. A reference case: zero gap and elliptic loading 
A simple presentation of the results of ( 1 4 )  and ( 1 7 )  makes no impact because it 

contains no demonstrattion that the present optimum loading distribution gives 
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improved performance. Areference condition is required for the purpose of comparison. 
The obvious reference case is the minimum-drag, elliptic-loading condition, which 

has often been regarded as the best for windward performance. This is defined as a 
continuous distribution with no gap and with symmetry about the plane of the water 
surface. Because the zero-gap condition is a fading case in the equations used above, a 
modified analysis is required in order to achieve an adequate description. 

In this modified analysis we replace ( 2 )  and ( 3 )  by a form which does not involve the 
simultaneous consideration of a trailing vortex element and its image but which 
integrates instead over a double-sided distribution which includes both the real sail 
andits image so that 

1 $” f(2’) sin #(Z’) dZ‘ 
2’-2 Ui(Z) = - 4n - H  

9 

1 /If f’(2‘) cos q5(Z’) dZ’ 
2’-z &(Z) = - 

4n - H  

When written in terms of the dimensionless variables previously defined, (2a) and 
(3a) lead to a modified version of ( 1  1 ), namely 

The force and moment equations (9), (10) and ( 1 2 )  are unchanged. 
To represent a loading distribution which is continuous through the water surface 

and which is symmetrical about z = 0, it is convenient to use a Fourier series based 
upon the modified co-ordinate transformation 

2 = COSyF. 

The loading distribution must then be made up of the symmetrical or odd terms in the 
Fourier sine series 

g(z’ )  = 2 A,sinj@-‘, 
m 

m = l  

wherej = 2m - 1. With this substitution, (lla) becomes 

After integration we have an equation for the induced velocity to replace (13):  

Substituting the appropriate components of this induced velocity in (g), (10) and 
(12)  and noting that an integral over the height of the real sail now corresponds to an 
integral from $ = ?g to @ = 0 in the modified co-ordinates, the following relationships 
are obtained: 

18 m 
fi = hain$/ A,sinj$sin$d@ 

0 m = l  
4. m -*J 2 jA,sinjll/ C A,sink@d@, 

4 o m = l  ?&=l 
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t n  
f, = hcos$ l  3 Aisinj$sin$d$ 

0 na=l 

t n  m +w/ C jAjsinj$ I: A,sink$d$, 
4 0 1n=1 n= 1 

127 m 1 
1 = h2 cos $ 1 C A j  sinj$ sin $ cos $ d$ 

0 m=1 
m 

n=l 
+ y / o ’ n ? l i l j A j s i n j $  2 d,,sink$cos$d$, 

where j = 2m-1 and k = 2n-1. 

Becausejand k are both odd numbers, all the terms in these integrals are symmetrical 
about $ = &r ( z  = 0). In  every case, therefore, we may replace the half-span (0 to in) 
integral by one half of the full-span (0 to Qn) integral. The use of full-span integrals 
makes it possible to invoke a standard integral result and obtain the final expressions 
for the forward thrust fz and the side thrust f, which replace (14) and (16): 

nhcos4 nsin$ f, = 4 A 1 + T m = l  C jA5. 

The rolling-moment equation is treated slightly differently to give 

E( j ,  k )  = s,”” sinj$ sin k$ cos $ d$ 

sin Q(j - k - 1) IT sin & ( j  - k + 1 )  n sin Q(j + k - 1) 7r sin &( j  + k + 1 )  n - 
+ j - k + l  j + k - 1  - j + k + l  

= ( - l ) ~ ( j + k ) ( j 2 + k 2 - I ) / { [ ( j - k ) 2 - 1 ] [ ( j + k ) 2 - 1 ] ) .  ( 1 8 4  

The reference case of elliptic loading is of course obtained by setting all the Fourier 
coefficients to zero except the fundamental coefficient A, and determining the value of 
A ,  which satisfies ( 1 7 ~ ) .  

If further coefficients are included, these may be optimized by precisely the same 
numerical procedure as that described in $6  in order to show, for the zero-gap case, 
the extent of the improvement which can be obtained in forward thrust compared 
with that given by elliptic loading. 

8. Results and discussion 
8.1. JIotivation 

When considering the results of the present calculations it must be remembered that, 
in using lifting-line theory, an artificially simple and unrealistic model has been chosen 
to represent the flow of wind over yacht sails. This, together with the omission of 
several important effects discussed in sfj2.3, 3 and 4, is clone deliberately in order to 
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0 I 2 3 P  0 I 2 3 R  0 I 2 3 g  
f, 1, f, f, 1, f ,  

A 0233 0887 A 0.281 0.810 A 0 366 1.320 
B 0,438 1.395 B 0.487 1.610 B 0.710 2,841 

C 0.414 1.179 C 0.266 0.589 C 0.181 0.393 

FIGURE 7. Circulation distributions for q5 = 25". A ,  optimum loading with boom height 0.3; 
B, optimum loading with zero gap; C ,  elliptic loading. 

achieve the degree of generality afforded by a simple dimensionless presentation and 
also to allow a direct comparison with elliptic loading. This is the well-known result of 
lifting-line theory which corresponds to maximum lift-drag ratio. In  their continuing 
attempts to improve the 1ifGdrag ratio, modern sail designers have sought to realize 
the theoretically predicted benefits of sail plans of high aspect ratio. They have also 
succeeded to a remarkable degree in controlling the curvature and twist of flexible 
sails to produce loading distributions which approximate as closely as possible to the 
elliptical form. 

These practical advances were achieved when designers, having become aware of a 
theoretical target (albeit an unrealistic one), sought realistic ways of approaching 
that target. In  the confidence that this remains a valid method for attempting design 
improvements, the present paper sets out to demonstrate, by means of a direct com- 
parison using the same theory, that a rather different optimum sail loading may yield 
advantages over the elliptic form in circumstances where there exists only a rolling- 
moment constraint. 

8.2 .  Description of results 
Calculated results are presented in figures 7 and 8 for relative wind angles of 25 O ,  which 
is rather extreme for close-hauled sailing, and 45 *, which represents a comfortable 
close reach. The luff length ratio b is chosen in each case to give the same dimensionless 
boom height of 0.3 on the mast-height scale. To appreciate the physical significance of 
the variation in h from 2 to 6, a comparison may be made with a typical racing dinghy 
having a rolling-moment limitation of 1500 N m, obtained mainly by disposition of the 
crew weight, and a mast height of 7 m. In a wind of speed 10 m/s this situation corres- 
ponds to a value of 3.05 for the dimensionless mast height h. 
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A 0,595 0.970 

4 '7 

1 
\ 

1 I I !  I 1 

0 1 2 3 

A 0.655 0.956 
. f x  .A. 

B 1.078 1.693 B 1.210 2.193 B 1,805 3.737 

C 0.929 1.179 C 0.571 0.589 C 0.389 0.411 

FIUURE 8. Circulation distributions for $ = 45". A ,  optimum loading with boom height 0.3; 
B, optimum loading with zero gap; C, elliptic loading. 

Clearly, therefore, to extend the present calculations to h = 6 is to adventure wildly 
beyond the limits of present-day design. However, the value of such extravagance will 
be more than proved if the novel thoughts provoked by these results lead, even 
occasionally, to imaginative experiments. 

On each graph, case A represents the optimum loading distribution with an under- 
boom gap. In  case B that gap is removed in order to compare more directly with case 
C, where the inclusion of the first Fourier coefficient alone leads to the classical case of 
elliptic loading. In the tallest case, the elliptic distribution is not plotted; the ordinates 
are too small. 

Beneath each loading diagram are tabulated the associated values of the forward 
thrust f, and the side thrust f,. 

8.3. Interpretation 

Examining first the very conservative case h = 2, it is clear that, for low sail plans or 
light winds elliptic loading yields comparable performance with the optimum form. 
Thus the present analysis has little to offer. However as h increases to 4 it is clear that 
the optimum loading yields a thrust improvement associated with a very much 
reduced lift derived from the upper part of the sail. Conventional reefing of course 
achieves this crudely. A better example, however, is found in the practice of those 
dinghy helmsmen who so arrange their sheets and boom downhaul devices that the 
top of the sail is allowed to twist to leeward when beating in uncomfortably strong 
winds. 

It is when the extreme cases (h = 6) are examined that the physical significance of 
these results really becomes outstandingly clear. Here, because of the disproportionate 
overturning effect of a conventionally loaded sail, the magnitude of the ellipt,ic 
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loading distribution becomes very small and the corresponding forward thrust is 
severely reduced (not to mention the windage effect of a tall mast relative to tl very 
slender sail). By contrast, the optimum loading is able to carry an increased lift, either 
by increased incidence or extended sail area, over a large proportion of the sail and 
thus produces a considerably increased thrust. The striking observation is that this is 
achieved in association with an actual reversal of lift at  the top of the sail. Thus the top 
of the sail is not used to produce thrust. A1 negative incidence the local force vector 
will be inclined decidedly backwards. Instead, the negative-lift portion has the effect, 
by virtue of the associated long moment arm, of holding the craft upright, at the 
expense of some drag, in order to support a very much increased sail loading lower down. 

8.4. Applications 

If an attempt is made to translate this observation into practical terms, then the 
implication is that it may be advantageous to design very tall masts, or very light and 
tender hulls, and to incorporate a means of actually forcing the upper portion of the 
sail to leeward. Negative lift could then be produced when necessary in order to bal- 
ance the vessel in very strong winds. 

Should it ever become possible to overcome the severe structural and control 
problems associated with this proposal, then it would appear that significant increases 
in performance might be gained. The numbers produced by the present over-simplified 
calculations should of course be regarded as optimistic. The inclusion of the gap case 
illustrates this by showing how one particular improvement in realism reduces the 
calculated advantage of optimization. Nevertheless, some real effects such as the gap, 
hull cross-flow roll angle or wind sheer are ignored equally in both the elliptic and the 
optimum case. These therefore are unlikely to alter the present conclusion. 

The effects which will reduce the benefits of optimization are those where optimiza- 
tion itself creates, but does not take into account, greater losses than those associated 
with the elliptic case. The greatly increased side thrust is a serious example. This must 
be supported by the lift of the underwater parts of the hull. Consequently these must 
be either increased in size, yielding greater skin-friction drag, or operate in a more 
highly loaded condition with a consequent penalty in underwater induced drag. 

In the same way the required increase in sail lift may be achieved by increasing either 
the area or the local lift coefficient. Both effects carry a drag penalty which will reduce 
the benefits of the optimization. 

8.5. Other work 

Once the present analysis is applied in the context of a particular design, then it 
becomes possible of course to include many of these effects and thus improve the 
realism of the calculation. This has been attempted by Wood (1971, unpublished 
calculation) and also by Perkins (1977) with results which remain encouraging. 

Of similar interest is a somewhat incomplete experiment described by Gopal 
(1977). The project, undertaken at  model scale in a wind tunnel, was to measure the 
forward thrust on a rigid sail of symmetrical 21 % thick section when the tip was 
controlled to rotate as necessary to maintain a fixed root bending moment about the 
roll axis of the simulated hull. The fact that an electronic control system was required 
to adjust the tip incidence stands as an example of the practical engineering problems 
associated with the present suggestions. 
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FIGURE 9. Comparison with experimental result by Gopal (1977). 0, Gopal, untwisted 
(4 = 30"); x , Gopal, active tip (Q = 30"). 

After setting the 'yacht axis' a t  a suitable 'course angle' and the main part of the 
sail a t  a fixed incidence, the wind speed was slowly increased while the forward thrust 
was measured by a strain-gauge balance in the sail root. With the control system 
inoperative, the limiting wind speed and hence the limiting forward thrust value was 
achieved when the capsize condition was observed a t  a pre-set rolling moment. The 
experiment was then repeated with the control system active. After the limiting wind 
speed was exceeded, Gopal reports a visible variation in the angle of the movable sail 
tip, a constant value of the rolling moment and a thrust value in excess of the previous 
maximum and increasing with speed. 

Figure 9 shows Gopal's forward-thrust measurements, recalculated in the present 
dimensionless form. Unfortunately Gopal selected a course angle of 30". Nevertheless 
a comparision is made with the present 25" thrust values from figure 7. 

The comparison illustrates of course the extent to  which practical results are lower 
than the predictions of the lifting-line model. Nevertheless it also shows quite clearly, 
despite the large experimental scatter, that a simple rotation of the top of the experi- 
mental sail has produced an  increase in thrust with an increase in h, which is similar 
to  the trend predicted for the optimum-loading case. The maximum experimental 
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thrust achieved was approximately double the value available from the untwisted 
sail subject to t,he same rolling-moment limitattion. 

The comparison between this simple experiment and the present dimensionless 
statements is not a direct one. The wing planform was rectangular and the twist was a 
step function, so neither elliptic loading nor the present optimum are relevant des- 
criptions of the flow. Nevertheless, as the only experimental evidence relating to the 
present problem, the qualitative support it provides is encouraging. It is hoped that 
further experimental results will be forthcoming. 
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